skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malinverno, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the classical view of tectonic rifting, divergent lithospheric plates cause the asthenospheric mantle to ascend, decompress, and melt, eventually producing new magmatic crust. This view has been updated by drilling results that found exhumed mantle at the continent–ocean transition (COT), leading to the definition of magma-poor rifted margins. Obtaining geologic samples from COTs to directly constrain the diversity of rifting processes is a challenge because the igneous crust and mantle rocks are typically buried under a thick sediment cover. The Tyrrhenian Sea provides an optimal location to test COT formation models by drilling because it has a comparatively thin sediment cover, allows for studying a conjugate pair of COT margins in a single drilling expedition, and has been mapped in unprecedented detail with recent geophysical measurements. The key objective of International Ocean Discovery Program Expedition 402 was to determine the nature of the geologic basement in the central Vavilov Basin, where exhumed mantle peridotites were expected, and in the conjugate margins to the west (Cornaglia Terrace) and east (Campania Terrace). In the Vavilov Basin, Sites U1614 and U1616 recovered an exceptional variety of mantle rocks, including lherzolites, harzburgites, plagioclase-bearing lherzolites and harzburgites, dunites, and minor amounts of pyroxenites and magmatic intrusions. The mantle peridotites are significantly hydrated and weathered, resulting in the formation of serpentine and carbonate veins. In contrast, Site U1612 recovered at the sediment/basement interface an unconsolidated breccia with clasts of basalt, peridotite, and granite, followed by variably deformed mylonitic gneisses that transition downhole to granitoid quartz-diorite rocks. On the western Tyrrhenian margin (Cornaglia Terrace), Site U1613 sampled a sediment sequence dating back to the Messinian (Late Miocene), resting on much older sedimentary rocks akin to the Triassic–Paleozoic successions outcropping in Sardinia, supporting the hypothesis that the margin consists of extended continental crust. On the conjugate margin to the east (Campania Terrace), Site U1617 did not reach the basement but recovered a complete sequence of Messinian evaporites, including halite. The samples and data collected during Expedition 402 provide an extensive new data set to determine the heterogeneity of the mantle, the nature and history of melt production and impregnation, and the extent and evolution of mantle serpentinization and carbonation; to constrain the geometry and timing of the deformation that led to mantle exhumation; to study the fluid-rock interactions between seawater, sediment, and mantle peridotites; and to constrain geodynamic models of rifting and COT formation. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  2. In a classical view of tectonic rifting, divergent lithospheric plates cause the asthenospheric mantle to ascend, decompress, and melt, eventually producing new magmatic crust. This view has been updated by drilling results that found exhumed mantle at the continent–ocean transition (COT), leading to the definition of magma-poor continental margins. Obtaining samples and data from drilling in magma-poor COTs is a challenge because the exposed mantle is typically buried under a thick sediment cover. The Tyrrhenian Sea provides an optimal location to test COT formation models by drilling because it has a comparatively thin sediment cover, allows for studying a conjugate pair of COT margins in a single drilling expedition, and has been mapped in unprecedented detail with recent geophysical measurements. The key objective of International Ocean Discovery Program Expedition 402 was to determine the nature of the geological basement in the central Vavilov Basin, where exhumed mantle peridotites were expected, and in the conjugate margins to the west (Cornaglia Terrace) and east (Campania Basin). In the Vavilov Basin, Sites U1614 and U1616 recovered an exceptional variety of mantle rocks, including lherzolites, harzburgites, plagioclase-bearing lherzolites and harzburgites, dunites, and minor amounts of pyroxenites and mantle intrusions. The mantle peridotites are significantly hydrated and weathered, resulting in the formation of low-temperature serpentine and carbonate veins. In contrast, Site U1612 recovered at the sediment/basement interface an unconsolidated breccia with clasts of basalt, peridotite, and granite, followed by variably deformed mylonitic gneisses that transition downhole to granitoid quartz-diorite rocks. On the western Tyrrhenian margin (Cornaglia Terrace), Site U1613 sampled a sediment sequence dating back to the Messinian (late Miocene), resting on much older sedimentary rocks akin to those outcropping in Sardinia, supporting the hypothesis that the margin consists of extended continental crust. On the conjugate margin to the east (Campania Terrace), Site U1617 did not reach the basement but recovered a complete sequence of Messinian evaporites, including halite. The samples and data collected during Expedition 402 provide an extensive new data set to determine the heterogeneity of the mantle, the nature and history of melt production and impregnation, and the extent and evolution of serpentinization and carbonate formation; to constrain the geometry and timing of the deformation that led to mantle exhumation; to study the fluid-rock interactions between seawater, sediment, and the serpentinizing mantle; and to constrain geodynamic models of rifting and COT formation. 
    more » « less
    Free, publicly-accessible full text available January 6, 2026
  3. Free, publicly-accessible full text available April 8, 2026
  4. Free, publicly-accessible full text available April 8, 2026
  5. Free, publicly-accessible full text available April 8, 2026
  6. Free, publicly-accessible full text available April 8, 2026
  7. Free, publicly-accessible full text available April 8, 2026
  8. Free, publicly-accessible full text available April 8, 2026
  9. Free, publicly-accessible full text available April 8, 2026
  10. Free, publicly-accessible full text available April 8, 2026